5 Logistic Regression

Gradient Descent for linear regressions-

 $f_{w,b}(x) = wx + b$  $J(\omega, b) = \frac{1}{2m} \sum_{i=1}^{m} (y_i - y_i)^2$  $=$   $\frac{1}{g_m}$   $\sum_{i=1}^{m}$   $\left(f_{\omega,b}(x_i) - g_i\right)^2$ 

Gradient Descent : -

Repeat until Convergences  $\begin{aligned} \n\lambda &= N - \alpha \left[ \frac{\partial}{\partial w} \mathcal{T}(w, b) \right] \n\end{aligned}$  $b = b - \alpha \sqrt{\frac{\partial}{\partial b} - \frac{\partial}{\partial b} \sqrt{b^2 + \frac{\partial}{\partial c^2}}}$  $\frac{\partial}{\partial \omega}J(\omega,b) = \frac{\partial}{\partial \omega}\frac{1}{\partial m}\sum_{i=1}^{mx} (f_{\omega,b}(x_i)-y_i)\frac{\partial}{\partial \omega}\frac{J(\omega,b)}{\partial \omega} = \frac{\partial}{\partial \omega}\sum_{i=1}^{mx} (f_{\omega,b}(x_i)-y_i)^2$  $= 2 + \sum_{\substack{m=1 \ \text{odd } m}}^{\infty} (w \times t + b - y)$ <br> $= 0 + \sum_{\substack{m=1 \ \text{odd } m}}^{\infty} (w \times t + b - y)$ =  $\frac{m}{\sum_{i=1}^{m}}$  (*u* x ; + b - y ; ) x x = 1  $\vec{e}$  (W x ; + 6 -y i) (axi)  $\frac{\partial}{\partial b}J(\omega,b)=\frac{1}{m}\sum_{i=1}^{m}(f_{w,b}(u_i)-y_i)$  $\frac{\partial J(\omega, b)}{\partial w} = \frac{1}{m} \sum_{i=1}^{m} (f_{\omega, b}(\nu_i) - y_i) \nu_i$ Louiste Regnement

Binary Clansfication

 $\begin{array}{ccccc}\n\text{(at} & \text{(1)} & \text{Non-at} \\
\text{(1)} & & \text{(0)} & \text{(1)} & \text{(1)} & \text{(1)} & \text{(1)} & \text{(1)} & \text{(1)} & \text{(1)}\n\end{array}$  $\overline{(\cdot)}$  $(x,y)$   $x \in R^n$ <br> $y \in \{0, 1\}$ m training examples : -<br>
{ (x<sup>(1)</sup>, y<sup>(1)</sup>), (x<sup>(2)</sup>, y<sup>(2)</sup>), - - - .<br>
- - ... (x<sup>(m)</sup>, y<sup>(m)</sup>) }  $X = \begin{bmatrix} 1 & 1 & 1 \\ x^{(0)} & x^{(2)} & x^{(3)} \\ \vdots & \vdots & \vdots \\ x^{(n)} & x^{(n)} & x^{(n)} \end{bmatrix} \begin{bmatrix} 1 \\ n \\ n \end{bmatrix}$  $X \in \mathbb{R}^{n \times m}$  $X.$  shape =  $(n, m)$  $y = [y^{(1)} y^{(2)} y^{(3)} - y^{(3)}]$  $\gamma \in \mathbb{R}^{1 \times m}$  $\frac{1}{2}$  shape =  $(1, m)$ Criven  $x, \hat{y} = P(y=1/x)$  $\gamma = \sigma(\omega^T b + x)$  $T(2) = \frac{1}{1+e^{-2}}$  $1/2$  is large  $\tau(2) \times 1$   $\pi_0 \times 1$  $\frac{1}{8}$  2 is small  $\tau(z)$   $\approx$   $\frac{1}{1+z}$   $\approx$  0

Cost Function :-

 $L(g,y) = -(g \log \hat{y} + (1-y) \log (1-\hat{y}))$ 

 $J(\omega, b) = \frac{1}{m} \sum_{i=1}^{m} \left\langle \left( \begin{matrix} a^{(i)} \\ y^{(i)} \end{matrix} \right) g^{(i)} \right\rangle$ 

birary (ros-entropy Lars.