Malaviya National Institute of Technology Jaipur
Department of Computer Science Engineering
Computer Graphics CST310
Mid-sem Examination, Date: Feb 29, 2024

Time: 4:15 pm-5:45 pm (1.5 hours) Spring 2024, VI Semester Max marks: 30

Instructions:

1. All questions are compulsory.
2. This paper has two pages, please turn it over.
3. Be precise in your answers.
4. (a) Write down a 4×4 matrix A which rotates a 3 D point by angle 30° along the x -axis and translates to a point $(15,20,10)$.
(b) Initially, let the point be located at the origin. What will be the new location of the point after applying the transformations of matrix A?
(c) Find the inverse of the following matrix:

$$
\left[\begin{array}{cc}
3 & 10 \\
2 & 7
\end{array}\right]
$$

(d) Explain in words the working of the flood-fill method of polygon filling. (30-40 words only)
,
(e) Explain in words the difference between image sampling and quantization. (30-
2. (a) Indicate using a table as well as a neat and clean graph which raster locations would be chosen by Bresenham's algorithm when scan-converting a line from pixel coordinate $(1,1)$ to pixel coordinate $(8,5)$.
(b) Develop an algorithm for scan converting unfilled rounded rectangles (an example is shown in Figure 1) with a specified radius (r) for the quarter-circle corners.

Figure 1: A rounded rectangle with quarter-circle corners of radius r .
3. (a) What is Perspective Projection? Write down the matrix representation of the Linear Model for Perspective Projection.
(b) Consider the following Projection Matrix.

$$
\left[\begin{array}{cccc}
-9 & 2 & 3 & 1 \\
3 & -9 & 6 & 1 \\
2 & 6 & -10 & 1
\end{array}\right]
$$

Compute the following:

1. Camera Center
2. Vanishing point of X -axis
3. Image point of origin
(c) 1. Write the general form of a scaling matrix to a fixed point $\mathrm{P}(\mathrm{h}, \mathrm{k})$.
4. Using this form, magnify the triangle with vertices $\mathrm{A}(0,0), \mathrm{B}(1,1)$, and $C(5,2)$ to twice its size while keeping $C(5,2)$ fixed.
