Mid-sem Answer Key

1. (a) Rotation of 3 -poon te along x-axis

$$
R=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & \cos \phi & -\sin \phi \\
0 & \sin \phi & \cos \phi
\end{array}\right]
$$

Given $\phi=30^{\circ}$.
$\begin{aligned} \text { Translation vector } & (T)\end{aligned}=\left[\begin{array}{l}x_{t} \\ y_{t} \\ z_{t}\end{array}\right]=\left[\begin{array}{c}15 \\ 20 \\ 10\end{array}\right]$
4×4 Affine matrix

$$
\begin{aligned}
& A=\left[\begin{array}{cc}
R & T \\
0 & 1
\end{array}\right] \\
\Rightarrow & A=\left[\begin{array}{cccc}
1 & 0 & 0 & 15 \\
0 & \sqrt{3} / 2 & -1 / 2 & 20 \\
0 & 1 / 2 & \sqrt{3} / 2 & 10
\end{array}\right]
\end{aligned}
$$

(b)

$$
\begin{aligned}
\text { Origin } & \rightarrow(0,0,0) \\
& \Rightarrow x=\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right]
\end{aligned}
$$

Transformation,

$$
\begin{aligned}
A x & =\left[\begin{array}{cccc}
1 & 0 & 0 & 15 \\
0 & \sqrt{3} / 2 & -1 / 2 & 20 \\
0 & 1 / 2 & \sqrt{3} / 2 & 10 \\
0 & 0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right] \\
& =[16]
\end{aligned}
$$

$$
=\left[\begin{array}{c}
16 \\
20 \\
10 \\
1
\end{array}\right]
$$

$\Rightarrow \quad(0,0,0)$ goes to $(15,20,10)$
(C)

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
3 & 10 \\
2 & 7
\end{array}\right] \\
& |A|=21-20=1 \\
& \operatorname{adj} A=\left[\begin{array}{cc}
7 & -10 \\
-2 & 3
\end{array}\right] \\
& A^{-1}=\frac{\operatorname{adj} A}{|A|}=\left[\begin{array}{cc}
7 & -10 \\
-2 & 3
\end{array}\right]
\end{aligned}
$$

(d) Flood - fill Polygon Filling:-
2. (a)

$$
\begin{aligned}
& \left(x_{1}, y_{1}\right)=(1,1) \\
& \left(x_{2}, y_{2}\right)=(8,5)
\end{aligned}
$$

$$
\begin{aligned}
& d x=x_{2}-x_{1}=7 \\
& d y=y_{2}-y_{1}=4
\end{aligned}
$$

\Rightarrow decision parameter $(P)=2 d y-d x$

$$
=8-7
$$

$$
=1
$$

Initial point (x, y)
if $\quad P<0$
next point $(x+1, y)$

$$
P_{k}=P_{k-1}+2 d y
$$

if $P \geq 0$
next point $(x+1, y+1)$

$$
P_{k}=p_{k-1}+2 d y-2 d x
$$

p	x	y	
1	1	1	
-5	2	2	
3	3	2	
-3	4	3	
5	5	3	
-1	6	4	
7	7	4	
	0	2	

$$
\left|\begin{array}{l}
7 \\
8
\end{array}\right|
$$

3. (b)

$$
P=\underbrace{\left[\begin{array}{cccc}
-9 & 2 & 3 & 1 \\
3 & -9 & 6 & 1 \\
2 & 6 & -10 & 1
\end{array}\right]}_{M} \underbrace{1}_{P_{4}}
$$

Camera Centre (C) $=-M^{-1} p_{4}$

$$
\begin{aligned}
& \text { Cofactor }(M)=\left[\begin{array}{lll}
54 & 42 & 36 \\
38 & 84 & 58 \\
39 & 63 & 75
\end{array}\right] \\
& \operatorname{det}(M)=-294 \\
& M^{-1}=\frac{-1}{294}\left[\begin{array}{lll}
54 & 42 & 36 \\
38 & 84 & 58 \\
39 & 63 & 75
\end{array}\right]
\end{aligned}
$$

$$
\underset{\text { Centre }}{\text { Camera }}(\tilde{C})=\frac{1}{294}\left[\begin{array}{l}
131 \\
189 \\
169
\end{array}\right]
$$

(b) Vanishing point of x-axis:

$$
\left.\begin{array}{c}
P\left[\begin{array}{lll}
1 & 0 & 0
\end{array} 0\right.
\end{array}\right]^{\top}=p_{1} .
$$

(c) Mage point of origin:

$$
\begin{aligned}
& P\left[\begin{array}{llll}
0 & 0 & 0 & 1
\end{array}\right]^{\top}=\rho_{4} \\
& (1,1)
\end{aligned}
$$

(c) 1. To keep one point $P(h, k)$ fixed, first trambete (h, k) to the orin, apply scaling and then translate back to ($h, k)$.

$$
\left[\begin{array}{lll}
1 & 0 & h \\
0 & 1 & k \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
b_{x} & 0 & 0 \\
0 & \text { shy } & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -k \\
0 & 1 & k \\
0 & 0 & 1
\end{array}\right]
$$

$$
=\left[\begin{array}{ccc}
s_{x} & 0 & -h_{s x}+h \\
0 & s_{y} & -k y_{y}+k \\
0 & 0 & 1
\end{array}\right]
$$

2. Transformation matrix,

$$
\begin{gathered}
T=\left[\begin{array}{lll}
1 & 0 & 5 \\
0 & 1 & 2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & -5 \\
0 & 1 & -2 \\
0 & 0 & 1
\end{array}\right] \\
=\left[\begin{array}{ccc}
5 & 0 & -5 \\
0 & 2 & -2 \\
0 & 0 & 1
\end{array}\right]
\end{gathered}
$$

Points in homogeneous coordinates

$$
A=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \quad B=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad C=\left[\begin{array}{l}
5 \\
2 \\
1
\end{array}\right]
$$

Magnified Points wring T

$$
\begin{aligned}
& A^{\prime}=T A=\left[\begin{array}{ccc}
2 & 0 & -5 \\
0 & 2 & -2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]=\left[\begin{array}{c}
-5 \\
-2 \\
1
\end{array}\right] \\
& B^{\prime}=T B=\left[\begin{array}{ccc}
2 & 0 & -5 \\
0 & 2 & -2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]=\left[\begin{array}{c}
-3 \\
0 \\
1
\end{array}\right] \\
& C^{\prime}=T C=\left[\begin{array}{lll}
2 & 0 & -5 \\
0 & 2 & -2 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
5 \\
2 \\
1
\end{array}\right]=\left[\begin{array}{l}
5 \\
2 \\
1
\end{array}\right] \\
& \Rightarrow \text { New points }(-5,-2)(-3,0)(5,2)
\end{aligned}
$$

