Rotation:-

$$
\begin{align*}
& u_{a}=r \cos \alpha \tag{1}\\
& y_{a}=r \sin \alpha
\end{align*}
$$

$$
\begin{aligned}
& x_{b}=r \cos (\alpha+\phi)=r \cos \alpha \cos \phi-r \sin \alpha \sin \phi \\
& y_{b}=r \sin (\alpha+\phi)=r \sin \alpha \cos \phi+r \cos \alpha \sin \phi
\end{aligned}
$$

from eq (1)

$$
\begin{array}{r}
u_{b}=u_{a} \cos \phi-y_{a} \sin \phi \\
y_{b}=y_{a} \cos \phi+x_{a} \sin \phi \\
\quad\left[\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right]\left[\begin{array}{l}
u_{a} \\
y_{a}
\end{array}\right]=\left[\begin{array}{l}
u_{b} \\
y_{b}
\end{array}\right] \\
\Rightarrow \operatorname{Let~} \phi=+45^{\circ} \\
\quad \Gamma \cos 45^{\circ}-\sin 45^{\circ} 7
\end{array}
$$

$$
\begin{array}{llll}
1 & \cdots \cdots & 1
\end{array}
$$

$$
\left[\begin{array}{cc}
\cos 45^{\circ} & -\sin 45^{\circ} \\
\sin 45^{\circ} & \cos 45^{\circ}
\end{array}\right]
$$

$$
\begin{aligned}
& \Rightarrow \text { Let } \phi=-30^{\circ} \\
& {\left[\begin{array}{rr}
\cos \left(-30^{\circ}\right) & -\sin \left(-30^{\circ}\right) \\
\sin \left(-30^{\circ}\right) & \cos \left(-30^{\circ}\right)
\end{array}\right] } \\
&= {\left[\begin{array}{rr}
\cos 30^{\circ} & \sin 30^{\circ} \\
-\sin 30^{\circ} & \cos 30^{\circ}
\end{array}\right] }
\end{aligned}
$$

Reflection:-
About x-axis, reflect $-x=\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$

About y-axis, reflect- $y=\left[\begin{array}{rr}-1 & 0 \\ 0 & 1\end{array}\right]$

Compositions of Transformations:-
Applying more than one transformations.
Let $R=$ Rotation Matrix
$S=$ Sale Matrix

$$
v_{1} \rightarrow S v_{1} \rightarrow R v_{2}
$$

$$
\begin{aligned}
& \overline{v_{2}} \quad \stackrel{v_{3}}{ } \\
\Rightarrow & V_{3}=R\left(S v_{1}\right) \\
& \underbrace{}_{3}=(R S) v_{1} \\
\Rightarrow & \underbrace{M}=R S
\end{aligned}
$$

in tums of single matrix.

$$
\begin{gathered}
R=\left[\begin{array}{ll}
1 & 0 \\
0 & .5
\end{array}\right]_{2 \times 2} \delta=\left[\begin{array}{cc}
\cos 45^{\circ} & -\sin 45^{\circ} \\
\sin 45^{\circ} & \cos 45^{\circ}
\end{array}\right]_{2 \times 2} \\
M=R S=[\quad]_{2 \times 2}
\end{gathered}
$$

$$
R S=S R ?
$$

66
Any linear transformation can be though of as a combination of rotation and scaling.

