Digital Image Fundamentals (17/01/24) Lecture-2
16 January 2024 18:13
Source: Digital Image Processing, 4e, Rafael C. Gonzalez, Richard E. Woods

1. Image Sensing and Acquisition

Using Sensors: Input to the sensor is light intensity and the output is voltage.

2. Image Sampling and Quantization

Images are denoted as a two-dimensional function

$$
f(x, y)
$$

- x, y are the spatial coordinates
- Value of $f(x, y)$ at each coordinate is a nonnegative and finite scalar quantity.

$$
\text { Hence, } \quad 0 \leq f(x, y)<\infty
$$

Components of $f(x, y)$:

1. Illumination ($i(x, y)$)
2. Reflectance ($r(x, y)$)

$$
f(x, y)=i(x, y) r(x, y)
$$

$$
0 \leq i(x, y)<\infty
$$

Total absorption
Total reflectance

Gray-scale Images:

Let the intensity of a monochrome image at (x, y) is l.

$$
\begin{gathered}
I=f(x, y) \\
L_{\min } \leq I \leq L_{\max }
\end{gathered}
$$

Intensity Scale: $\left[L_{\min }, L_{\max }\right]$

Digitizing is to sample the function in both coordinates and also in intensity.

Sampling: Digitizing the coordinate values.
Quantization: Digitizing the intensity values.

ㅁㅁ
3. Representation of Digital Images
$f(x, y)$, containing M rows and N columns, integer values for these discrete coordinates: $x=0,1,2, \ldots \ldots . . M-1$ and $y=0,1,2, \ldots N-1$

Spatial Domain, Spatial Coordinates

$$
f(x, y)=\left[\begin{array}{cccc}
f(0,0) & f(0,1) & \cdots & f(0, N-1) \\
f(1,0) & f(1,1) & \cdots & f(1, N-1) \\
\vdots & \vdots & & \vdots \\
f(M-1,0) & f(M-1,1) & \cdots & f(M-1, N-1)
\end{array}\right]
$$

Matrix form:

$$
\mathbf{A}=\left[\begin{array}{cccc}
a_{0,0} & a_{0,1} & \cdots & a_{0, N-1} \\
a_{1,0} & a_{1,1} & \cdots & a_{1, N-1} \\
\vdots & \vdots & & \vdots \\
a_{M-1,0} & a_{M-1,1} & \cdots & a_{M-1, N-1}
\end{array}\right]
$$

