Extending this idea to set of n points.

Joining of segments

$$
\text { 2SEGMENTS: } \begin{array}{rlll}
& P_{1} & P_{2} & P_{3} \text { (Points) } \\
& P_{1}^{\prime} & P_{2}^{\prime} & P_{3}^{\prime} \text { (Tangents) }
\end{array}
$$

where P_{2} and P_{2}^{\prime} are the intermediate point and its tangent vector which is determined through some continuity constraint.

* fiecewirs spline of degree k has continuity of order $(k-1)$ at the internal joints.

Thus unbic Splines have second order continuity ie. $P_{2}^{\prime \prime}(t)$ is continuous over the joint.

$$
\begin{aligned}
P(t) & =B_{1}+B_{2} t+B_{3} t^{2}+B_{4} t^{3} \\
& =\sum_{i=1}^{4} B_{i} t^{i-1} \quad t_{1} \leq t \leq t_{2} \\
P^{\prime}(t) & =B_{2}+2 B_{3} t+3 B_{4} t^{2} \\
& =\sum_{i=1}^{4}(i-1) B_{i} t^{i-2} \\
P^{\prime \prime}(t) & =2 B_{3}+6 B_{4} t \\
& =\sum_{i=1}^{4}(i-1)(i-2) B_{i} t^{i-3} \quad t_{1} \leq t \leq t_{2}
\end{aligned}
$$

Fliest Segment $\left(t=t_{2}\right)$

$$
P^{\prime \prime}=6 B_{4} t_{2}+2 B_{3}
$$

Second Segment ($t=0$)

$$
p^{\prime \prime}=2 B_{3}
$$

So, $\left(6 B_{4} t_{2}+2 B_{3}\right)_{\operatorname{seg} 1}=\left(2 B_{3}\right)_{\operatorname{seg} 2}$ (1)

We know,

$$
\left.\begin{array}{l}
B_{1}=P_{1} \\
B_{2}=P_{1}^{\prime} \\
B_{3}=\frac{3\left(P_{2}-P_{1}\right)}{t_{2}^{2}}-\frac{2\left(P_{1}^{\prime}\right)}{t_{2}}-\frac{P_{2}^{\prime}}{t_{2}} \\
B_{4}=\frac{2\left(P_{1}-P_{2}\right)}{t_{2}^{3}}+\frac{P_{1}^{\prime}}{t_{2}^{2}}+\frac{P_{2}^{\prime}}{t_{2}^{2}} \tag{1}
\end{array}\right\} \text { (A) }
$$

Substituting b_{3} and b_{4} from (A) in(1)

$$
\begin{aligned}
& 3\left[\frac{2\left(\rho_{1}-\rho_{2}\right)}{t_{2}{ }^{3}}+\frac{\rho_{1}^{\prime}}{t_{2}{ }^{2}}+\frac{\rho_{2}{ }^{\prime}}{t_{2}{ }^{2}}\right] t_{2}+\left[\frac{3\left(\rho_{2}-\rho_{1}\right)}{t_{2}{ }^{2}}-\frac{2 \rho_{1}^{\prime}}{t_{2}}-\frac{\rho_{2}^{\prime}}{t_{2}}\right] \\
& =\left[\frac{3\left(P_{3}-P_{2}\right)}{t_{3}{ }^{2}}-\frac{2 P_{2}^{\prime}}{t_{3}}-\frac{P_{3}^{\prime}}{t_{3}}\right] \\
& \frac{6\left(P_{1}-P_{2}\right)}{t_{2}^{2}}+\frac{3 P_{1}^{\prime}}{t_{2}}+\frac{3 P_{2}^{\prime}}{t_{2}}+\frac{3\left(P_{2}-P_{1}\right)}{t_{2}^{2}}-\frac{2 P_{1}^{\prime}}{t_{2}}-\frac{P_{2}^{\prime}}{t_{2}} \\
& =\frac{3\left(P_{3}-P_{2}\right)}{t_{3}^{2}}-\frac{2 P_{2}^{\prime}}{t_{3}}-\frac{P_{3}^{\prime}}{t_{3}} \\
& \frac{3 P_{1}^{\prime}}{t_{2}}+\frac{3 P_{2}^{\prime}}{t_{2}}-\frac{2 P_{1}^{\prime}}{t_{2}}-\frac{P_{2}^{\prime}}{t_{2}}+\frac{2 P_{2}^{\prime}}{t_{3}}+\frac{P_{3}^{\prime}}{t_{3}} \\
& =\frac{3\left(P_{3}-P_{2}\right)}{t_{3}^{2}}-\frac{6\left(P_{1}-P_{2}\right)}{t_{2}^{2}}-\frac{3\left(P_{2}-P_{1}\right)}{t_{2}^{2}} \\
& t_{2} t_{3} \times\left[\frac{p_{1}^{\prime}}{t_{2}}+\frac{2 p_{2}^{\prime}}{t_{2}}+\frac{2 p_{2}^{\prime}}{t_{3}}+\frac{p_{3}^{\prime}}{t_{3}}=\frac{3\left(p_{3}-p_{2}\right)}{t_{3}^{2}}+\frac{3\left(p_{2}-p_{1}\right)}{t_{2}^{2}}\right. \\
& t_{3} P_{1}^{\prime}+2\left(t_{3}+t_{2}\right) P_{2}^{\prime}+t_{2} P_{3}^{\prime}=\frac{3 t_{2}\left(P_{3}-P_{2}\right)}{t_{3}}+\frac{3 t_{3}\left(P_{2}-P_{1}\right)}{t_{2}} \\
& t_{3} p_{1}^{\prime}+2\left(t_{3}+t_{2}\right) p_{2}^{\prime}+t_{2} p_{3}^{\prime}=\frac{3}{t_{2} t_{3}}\left(t_{2}^{2}\left(p_{3}-p_{2}\right)+t_{3}^{2}\left(p_{2}-p_{1}\right)\right) \\
& {\left[\begin{array}{lll}
t_{3} & 2\left(t_{3}+t_{2}\right) & t_{2}
\end{array}\right]\left[\begin{array}{l}
P_{1}^{\prime} \\
P_{2}^{\prime} \\
P_{3}^{\prime}
\end{array}\right]=\frac{3}{t_{2} t_{3}}\left(t_{2}^{2}\left(P_{3}-P_{2}\right)+t_{3}^{2}\left(P_{2}-P_{1}\right)\right)}
\end{aligned}
$$

In general, for the $k^{\text {th }}$ and $(k+1)^{\text {th }}$ segment ($1 \leq k \leq n-2$)

$$
\begin{aligned}
& {\left[\begin{array}{lll}
t_{k+2} & 2\left(t_{k+1}+t_{k+2}\right) & t_{k+1}
\end{array}\right]\left[\begin{array}{l}
P_{k}^{\prime} \\
P_{k+1}^{\prime} \\
P_{k+2}^{\prime}
\end{array}\right]} \\
& \quad=\frac{3}{t_{k+1} t_{k+2}}\left(t_{k+1}^{2}\left(\rho_{k+2}-P_{k+1}\right)+t_{k+2}^{2}\left(P_{k+1}-P_{k}\right)\right)
\end{aligned}
$$

Set of $n-2$ equations form a linear system for the tangent vectors P_{k}^{\prime}

$$
\left.\left.\begin{array}{rl}
{\left[\begin{array}{ccccc}
t_{3} & 2\left(t_{2}+t_{3}\right) & t_{2} & 0 & \cdots \\
0 & t_{4} & 2\left(t_{3}+t_{4}\right) & t_{3} & \vdots \\
\cdots \cdots & \cdots & t_{m} & 2\left(t_{m}+t_{m-1}\right) & t_{m-1}
\end{array}\right]\left[\begin{array}{c}
P_{1}^{1} \\
P_{2}^{1} \\
\vdots \\
P_{n}^{\prime}
\end{array}\right]} \\
& =\left[\begin{array}{cc}
\frac{3}{t_{2} t_{3}}\left(t_{2}^{2}\left(P_{3}-P_{2}\right)+t_{3}^{2}\left(P_{2}-P_{1}\right)\right) \\
\frac{3}{t_{3} t_{4}}\left(t_{3}^{2}\left(P_{4}-P_{3}\right)+t_{4}^{2}\left(P_{3}-P_{2}\right)\right. \\
\frac{3}{t_{m-1} t_{m}}\left(t_{m-1}^{2}\left(P_{m}-P_{m-1}\right)+t_{m}^{2}\left(P_{m-1}-P_{m-2}\right)\right.
\end{array}\right] \tag{b}
\end{array}\right]\right)
$$

This system of equations can be used to salve for the tangent vectors $P_{1}^{\prime}, P_{2}^{\prime} \ldots P_{n}^{\prime}$

Solving for $B_{1} B_{2} B_{3}$ and B_{4}

$$
\begin{aligned}
& B_{1 k}=P_{k 1} \\
& B_{2 k}=P_{k+1}^{\prime} \\
& B_{3 k}=\frac{3\left(P_{k+1}-P_{k}\right)}{t_{k+1}^{2}}-\frac{2 P_{k}^{\prime}}{t_{k+1}}-\frac{P_{k+1}^{\prime}}{t_{k+1}} \\
& B_{4 k}=\frac{2\left(P_{k}-P_{k+1}\right)}{t_{k+1}^{3}}+\frac{P_{k}^{\prime}}{t_{k+1}^{2}}+\frac{P_{k+1}^{\prime}}{t_{k+1}^{2}}
\end{aligned}
$$

Rearranging,

$$
\begin{aligned}
& {\left[\begin{array}{l}
B_{1 k} \\
B_{2 k} \\
B_{3 k} \\
B_{4 k}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 / t_{k+1}^{2} & -2 / t_{k+1} & 3 / t_{k+1}^{2} & -1 / t_{k+1} \\
2 / t_{k+1} & 1 / t_{k+1}^{2} & -2 / t_{k+1}^{3} & 1 t_{k+1}^{2}
\end{array}\right]\left[\begin{array}{l}
\rho_{k} \\
P_{k}^{\prime} \\
\rho_{k+1} \\
\rho_{k+1}
\end{array}\right]} \\
& P_{k}(t)=\sum_{i=1}^{4} B_{1 k} t^{k-1} \quad 0 \leq t \leq t_{k+1} \\
& 1 \leq k \leq n-1 \\
& =\left[\begin{array}{llll}
1 & t & t^{2} & t^{3}
\end{array}\right]\left[\begin{array}{llll}
B_{1 k} & B_{2 k} & B_{3 k} & B_{4 k}
\end{array}\right]^{\top} \\
& P_{k}(t)=\left[\begin{array}{lll}
1 & t & t^{2}
\end{array} t^{3}\right]\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-3 / t_{k+1}^{2} & -2 / t_{k+1} & 3 / t_{k+1}^{2} & -1 / t_{k+1} \\
2 / t_{k+1}^{3} & 1 / t_{k+1}^{2} & -2 / t_{k+1}^{3} & 1 / t_{k+1}
\end{array}\left[\begin{array}{c}
P_{k} \\
P_{k \times 4}^{\prime} \\
P_{k+1} \\
P_{k+1}^{1}
\end{array}\right]\right. \\
& P_{k}(t)=\left[\left(1-3 t^{2} / t_{k+1}^{2}+2 t^{3} / t_{k+1}^{3}\right) \quad\left(t-2 t^{2} / t_{k+1}+t^{3} / t_{k+1}^{2}\right)\right. \\
& \left.\left(\begin{array}{rr}
3 t^{2} / t_{2}^{2} & -2 t^{3} / 3 \\
t_{k+1} & t_{k+1}
\end{array}\right)\left(-t^{2} /+t^{3} / 2_{k+1}^{2}\right)\right]\left[\begin{array}{l}
P_{k} \\
p_{k}^{\prime} \\
P_{k+1} \\
P_{k+1}^{\prime}
\end{array}\right]_{4 \times 1}
\end{aligned}
$$

Substituting $u=t / t_{k+1}$ rearranging

$$
\left.\begin{array}{c}
P_{k}(u)=\left[\begin{array}{lll}
F_{1}(u) & F_{2}(u) & F_{3}(u)
\end{array} F_{u}(u)\right.
\end{array}\right]\left[\begin{array}{c}
P_{k} \\
P_{k+1} \\
P_{k}^{\prime} \\
P_{k+1}
\end{array}\right]
$$

where $F_{1}, F_{2}, F_{3}, F_{3}$ are called the Blending Functions.

